Pages

Thursday, January 16, 2020

How Far is Too Far? | The Age of A.I. (Thời đại của trí tuệ nhân tạo)




Trong khoa học máy tínhtrí tuệ nhân tạo hay AI (tiếng AnhArtificial Intelligence), đôi khi được gọi là trí thông minh nhân tạo, là trí thông minh được thể hiện bằng máy móc, trái ngược với trí thông minh tự nhiên được con người thể hiện. Thông thường, thuật ngữ "trí tuệ nhân tạo" thường được sử dụng để mô tả các máy móc (hoặc máy tính) bắt chước các chức năng "nhận thức" mà con người liên kết với tâm trí con người, như "học tập" và "giải quyết vấn đề".[1]
Khi máy móc ngày càng tăng khả năng, các nhiệm vụ được coi là cần "trí thông minh" thường bị loại bỏ khỏi định nghĩa về AI, một hiện tượng được gọi là hiệu ứng AI.[2] Một câu châm ngôn trong Định lý của Tesler nói rằng "AI là bất cứ điều gì chưa được thực hiện."[3] Ví dụ, nhận dạng ký tự quang học thường bị loại trừ khỏi những thứ được coi là AI, đã trở thành một công nghệ thông thường.[4] khả năng máy hiện đại thường được phân loại như AI bao gồm thành công hiểu lời nói của con người,[1] cạnh tranh ở mức cao nhất trong trò chơi chiến lược (chẳng hạn như cờ vua và Go),[5] xe hoạt động độc lập, định tuyến thông minh trong mạng phân phối nội dung, và mô phỏng quân sự.
Trí tuệ nhân tạo có thể được phân thành ba loại hệ thống khác nhau: trí tuệ nhân tạo phân tích, lấy cảm hứng từ con người và nhân tạo.[6] AI phân tích chỉ có các đặc điểm phù hợp với trí tuệ nhận thức; tạo ra một đại diện nhận thức về thế giới và sử dụng học tập dựa trên kinh nghiệm trong quá khứ để thông báo các quyết định trong tương lai. AI lấy cảm hứng từ con người có các yếu tố từ trí tuệ nhận thức và cảm xúc; hiểu cảm xúc của con người, ngoài các yếu tố nhận thức và xem xét chúng trong việc ra quyết định. AI nhân cách hóa cho thấy các đặc điểm của tất cả các loại năng lực (nghĩa là trí tuệ nhận thức, cảm xúc và xã hội), có khả năng tự ý thức và tự nhận thức được trong các tương tác.
Trí tuệ nhân tạo được thành lập như một môn học thuật vào năm 1956, và trong những năm sau đó đã trải qua nhiều làn sóng lạc quan,[7][8] sau đó là sự thất vọng và mất kinh phí (được gọi là " mùa đông AI "),[9][10] tiếp theo là cách tiếp cận mới, thành công và tài trợ mới.[8][11] Trong phần lớn lịch sử của mình, nghiên cứu AI đã được chia thành các trường con thường không liên lạc được với nhau.[12] Các trường con này dựa trên các cân nhắc kỹ thuật, chẳng hạn như các mục tiêu cụ thể (ví dụ: " robot học " hoặc "học máy"),[13] việc sử dụng các công cụ cụ thể ("logic" hoặc mạng lưới thần kinh nhân tạo) hoặc sự khác biệt triết học sâu sắc.[14][15][16] Các ngành con cũng được dựa trên các yếu tố xã hội (các tổ chức cụ thể hoặc công việc của các nhà nghiên cứu cụ thể).[12]
Lĩnh vực này được thành lập dựa trên tuyên bố rằng trí thông minh của con người "có thể được mô tả chính xác đến mức một cỗ máy có thể được chế tạo để mô phỏng nó".[17] Điều này làm dấy lên những tranh luận triết học về bản chất của tâm trí và đạo đức khi tạo ra những sinh vật nhân tạo có trí thông minh giống con người, đó là những vấn đề đã được thần thoại, viễn tưởng và triết học từ thời cổ đại đề cập tới.[18] Một số người cũng coi AI là mối nguy hiểm cho nhân loại nếu tiến triển của nó không suy giảm.[19] Những người khác tin rằng AI, không giống như các cuộc cách mạng công nghệ trước đây, sẽ tạo ra nguy cơ thất nghiệp hàng loạt.[20]
Trong thế kỷ 21, các kỹ thuật AI đã trải qua sự hồi sinh sau những tiến bộ đồng thời về sức mạnh máy tính, dữ liệu lớn và hiểu biết lý thuyết; và kỹ thuật AI đã trở thành một phần thiết yếu của ngành công nghệ, giúp giải quyết nhiều vấn đề thách thức trong học máy, công nghệ phần mềm và nghiên cứu vận hành.[11]

Wednesday, January 15, 2020

Complete Python Pandas Data Science Tutorial! (Reading CSV/Excel files, Sorting, Filtering, Groupby)





Data used in this Tutorial: https://github.com/KeithGalli/pandas
Python Pandas Documentation: https://pandas.pydata.org/pandas-docs/stable/

Video Outline!
0:45 - Why Pandas?
1:46 - Installing Pandas
2:03 - Getting the data used in this video
3:50 - Loading the data into Pandas (CSVs, Excel, TXTs, etc.)
8:49 - Reading Data (Getting Rows, Columns, Cells, Headers, etc.)
13:10 - Iterate through each Row
14:11 - Getting rows based on a specific condition
15:47 - High Level description of your data (min, max, mean, std dev, etc.)
16:24 - Sorting Values (Alphabetically, Numerically)
18:19 - Making Changes to the DataFrame
18:56 - Adding a column
21:22 - Deleting a column
22:14 - Summing Multiple Columns to Create new Column.
24:14 - Rearranging columns
28:06 - Saving our Data (CSV, Excel, TXT, etc.)
31:47 - Filtering Data (based on multiple conditions)
35:40 - Reset Index
37:41 - Regex Filtering (filter based on textual patterns)
43:08 - Conditional Changes
47:57 - Aggregate Statistics using Groupby (Sum, Mean, Counting)
54:53 - Working with large amounts of data (setting chunksize)