Pages
▼
Deep Learning resources for self-study
- Biologische Neuronen und technische Neuronenmodelle
- Convolutional Neural Networks (CNN)
- R-CNN Modell:
"Rich feature hierarchies for accurate object detection and semantic segmentation"
Paper
- Fast R-CNN Modell:
"Fast R-CNN"
Paper
- Capsule Networks
"Dynamic Routing Between Capsules"
Paper
- Deep Learning Bibliotheken
Crashkurs Deep Learning Bibliotheken: TensorFlow und Keras
- Faster R-CNN Modell:
"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks"
Paper
- Reservoir Computing: Echo State Networks
- Einführung/Crash-Kurs: GPU Programmierung
- Yolo und Yolo9000 Modell:
"You Only Look Once: Unified, Real-Time Object Detection"
Paper1
"YOLO9000: Better, Faster, Stronger"
Paper2
- Reservoir Computing: Liquid State Machines
- ILSVRC Benchmark
Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Wie funktioniert der Wettbewerb?
Link
- SSD Modell:
"Single Shot MultiBox Detector"
Paper
- Generative Adversarial Networks
- Deep Learning Bibliotheken
Crashkurs Deep Learning Bibliotheken: Caffe/Caffe2 sowie Torch/PyTorch
- Mask R-CNN Modell:
"Mask R-CNN"
Paper
- Neuromorphische Chips