- http://www.juergenbrauer.org/teaching/deep_learning/slides_ws1617_deep_learning_brauer.pdf
- https://github.com/juebrauer/Book_Introduction_to_Deep_Learning
- http://www.wildml.com/deep-learning-glossary/
- Biologische Neuronen und technische Neuronenmodelle
- Convolutional Neural Networks (CNN)
- R-CNN Modell:
"Rich feature hierarchies for accurate object detection and semantic segmentation"
Paper - Fast R-CNN Modell:
"Fast R-CNN"
Paper - Capsule Networks
"Dynamic Routing Between Capsules"
Paper - Deep Learning Bibliotheken
Crashkurs Deep Learning Bibliotheken: TensorFlow und Keras - Faster R-CNN Modell:
"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks"
Paper - Reservoir Computing: Echo State Networks
- Einführung/Crash-Kurs: GPU Programmierung
- Yolo und Yolo9000 Modell:
"You Only Look Once: Unified, Real-Time Object Detection"
Paper1
"YOLO9000: Better, Faster, Stronger"
Paper2 - Reservoir Computing: Liquid State Machines
- ILSVRC Benchmark
Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Wie funktioniert der Wettbewerb?
Link - SSD Modell:
"Single Shot MultiBox Detector"
Paper - Generative Adversarial Networks
- Deep Learning Bibliotheken
Crashkurs Deep Learning Bibliotheken: Caffe/Caffe2 sowie Torch/PyTorch - Mask R-CNN Modell:
"Mask R-CNN"
Paper - Neuromorphische Chips